问答详情

完整的数据分析项目包含哪些内容?

1278次观看
标签: 数据分析 数据分析项目报告
老师回答

1、项目背景:业务需求的初步提出

这里主要是业务方需要解决的问题,面临的业务痛点。

2、业务需求可行性研究

根据业务方的初步需求,数据分析师跟业务方共同参与需求讨论。对背景的相关信息和数据进行收集,初步评价业务方的分析需求是否合理,是否可行。有的业务需求可能是‘伪命题’,要进行甄别。

3、制定分析框架和计划

将业务需求转化为目标变量的定义。分析思路的描述,数据抽取规则,项目落地的风险和项目价值。

4、数据抽取、清洗、摸底

根据梳理的分析框架,进行样本数据的抽取。并将数据进行清洗,去掉脏数据、无效数据等。对数据进行预处理后,也需要对数据进行摸底分析,查看下数据的分布,对数据进行相关性分析等,对于相关度很高的指标,做一定的删减。

5、搭建数据分析模型

进一步对纳入模型的指标进行筛选。尝试多种算法和分析方法,并比较不同模型的性能和结果,选择最优的模型的模型方案。

6、与业务方讨论模型的初步结论,提出新的思路和模型优化方案

将模型的初步结论与业务方进行讨论,探索是否有优化的空间和新的思路,如果有优化的空间,则制定模型的优化实施方案。

7、按优化方案重新抽取样本建模,提炼结论并验证

按优化方案重新抽取数据、清洗、建模。提炼结论。用最新的实际数据对结论进行验证。

8、完成分析报告及落地建议

分析报告应包括模型预测效果和效率,模型验证的结果。

通过模型整理的可供运营参考的特征和规律;

提出落地应用的分层建议及相应的运营建议。

免费直播

    相关推荐
    大数据核心算法有哪些?
    刘老师 数据分析师

    1、A* 搜索算法——图形搜索算法,从给定起点到给定终点计算出路径。其中使用了一种启发式的估算,为每个节点估算通过该节点的最佳路径,并以之为各个地点排定次序。算法以得到的次序访问这些节点。因此,A*搜索算法是最佳优先搜索的范例。

    2、集束搜索(又名定向搜索,Beam Search)——最佳优先搜索算法的优化。使用启发式函数评估它检查的每个节点的能力。不过,集束搜索只能在每个深度中发现最前面的m个最符合条件的节点,m是固定数字——集束的宽度。

    3、二分查找(Binary Search)——在线性数组中找特定值的算法,每个步骤去掉一半不符合要求的数据。

    4、分支界定算法(Branch and Bound)——在多种最优化问题中寻找特定最优化解决方案的算法,特别是针对离散、组合的最优化。

    5、Buchberger算法——一种数学算法,可将其视为针对单变量最大公约数求解的欧几里得算法和线性系统中高斯消元法的泛化。

    6、数据压缩——采取特定编码方案,使用更少的字节数(或是其他信息承载单元)对信息编码的过程,又叫来源编码。

    7、Diffie-Hellman密钥交换算法——一种加密协议,允许双方在事先不了解对方的情况下,在不安全的通信信道中,共同建立共享密钥。该密钥以后可与一个对称密码一起,加密后续通讯。

    8、Dijkstra算法——针对没有负值权重边的有向图,计算其中的单一起点最短算法。

    9、离散微分算法(Discrete differentiation)。

    数据挖掘中实用分析方法有哪些?
    刘老师 数据分析师

    1.基于历史的MBR分析

    基于历史(Memory-Based Reasoning)的MBR分析方法最主要的概念是用已知的案例(case)来预测未来案例的一些属性(attribute),通常找寻最相似的案例来做比较。

    MBR中有两个主要的要素,分别为距离函数(distance function)与结合函数(combination function)。距离函数的用意在找出最相似的案例;结合函数则将相似案例的属性结合起来,以供预测之用。

    MBR的优点是它容许各种型态的数据,这些数据不需服从某些假设。另一个优点是其具备学习能力,它能藉由旧案例的学习来获取关于新案例的知识。较令人诟病的是它需要大量的历史数据,有足够的历史数据方能做良好的预测。此外记忆基础推理法在处理上亦较为费时,不易发现最佳的距离函数与结合函数。其可应用的范围包括欺骗行为的侦测、客户反应预测、医学诊疗、反应的归类等方面。

    2.购物篮分析

    购物篮分析(Market Basket Analysis)最主要的目的在于找出什么样的东西应该放在一起商业上的应用在藉由顾客的购买行为来了解是什么样的顾客以及这些顾客为什么买这些产品, 找出相关的联想(association)规则,企业藉由这些规则的挖掘获得利益与建立竞争优势。举例来说,零售店可藉由此分析改变置物架上的商品排列或是设计 吸引客户的商业套餐等等。

    购物篮分析基本运作过程包含下列三点:

    选择正确的品项:这里所指的正确乃是针对企业体而言,必须要在数以百计、千计品项中选择出真正有用的品项出来。

    经由对共同发生矩阵(co-occurrence matrix)的探讨挖掘出联想规则。

    克服实际上的限制:所选择的品项愈多,计算所耗费的资源与时间愈久(呈现指数递增),此时必须运用一些技术以降低资源与时间的损耗。

    购物篮分析技术可以应用在下列问题上:针对信用卡购物,能够预测未来顾客可能购买什么。对于电信与金融服务业而言,经由购物篮分析能够设计不同的服务组合以扩大利润。保险业能藉由购物篮分析侦测出可能不寻常的投保组合并作预防。对病人而言,在疗程的组合上,购物篮分析能作为是否这些疗程组合会导致并发症的判断依据。

    3.决策树

    决策树(Decision Trees)在解决归类与预测上有着极强的能力,它以法则的方式表达,而这些法则则以一连串的问题表示出来,经由不断询问问题最终能导出所需的结果。典型的决策树顶端是一个树根,底部有许多的树叶,它将纪录分解成不同的子集,每个子集中的字段可能都包含一个简单的法则。此外,决策树可能有着不同的外型,例如二元 树、三元树或混和的决策树型态。

    4.遗传算法

    遗传算法(Genetic Algorithm)学习细胞演化的过程,细胞间可经由不断的选择、复制、交配、突变产生更佳的新细胞。基因算法的运作方式也很类似,它必须预先建立好一个模式,再经由一连串类似产生新细胞过程的运作,利用适合函数(fitness function)决定所产生的后代是否与这个模式吻合,最后仅有最吻合的结果能够存活,这个程序一直运作直到此函数收敛到最佳解。基因算法在群集 (cluster)问题上有不错的表现,一般可用来辅助记忆基础推理法与类神经网络的应用。

    5.聚类分析

    聚类分析(Cluster Detection)这个技术涵盖范围相当广泛,包含基因算法、类神经网络、统计学中的群集分析都有这个功能。它的目标为找出数据中以前未知的相似群体,在许许多多的分析中,刚开始都运用到群集侦测技术,以作为研究的开端。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司