问答详情

如何对招聘数据进行分析?

1186次观看
标签: 招聘数据 招聘数据分析
老师回答

1、过程数据

过程数据分析是对招聘流程进行优化和持续改进,过程数据的分析,我们可以直接采用漏斗图进行不同维度的分析,例如招聘团队、公司、部门、岗位、时间等维度。

2、结果数据

结果数据也是招聘KPI,它直接反映人力资源部门或者招聘团队的工作效果,甚至决定着人力资源部门或招聘团队能否跟上公司的发展节奏。

我们可以根据招聘计划完成率来调整招聘工作或者对其它模块工作提出改进建议,例如通过分析,我们得出招聘计划完成率最低的5个岗位,我们可以重点建立几个岗位的人才库储备人员、通过一系列措施留人、开展师带徒项目或后备人才项目提前储备人员等。

平均招聘周期决定着人力资源部门或招聘团队能否快速的把人员招聘到位,以便及时开展工作或接替离职人员工作。

3、渠道数据

渠道数据主要是分析各个招聘渠道的优劣以及在什么情况下采用何种招聘渠道最有效。渠道数据的分析主要是以招聘渠道维度来分析过程指标以及结果指标,同时可以结合部门、岗位、职级等维度来得到特定情况下最有效的招聘渠道。

例如我们可以来分析各个招聘渠道录用人数点录用总人数的比率,如果结合岗位维度,我们会发现招聘渠道1是招聘某岗位最好的渠道。

我们还可以通过各个招聘渠道的对比,来分析招聘成本支出情况。

如果再结合人均招聘成本情况,我们会发出使用最多的网络招聘成本最低,而现场招聘、校园招聘的成本是非常高的。再结合录用人数和录用率的对比,我们可以通过年度招聘计划来做一个最优招聘渠道组合,在这个基础上安排我们全年的招聘工作。

4、成本数据

招聘工作并不是无休止的投入,如果不计成本的投入,相信招聘工作也就非常好做,所以招聘成本指标是我们必须要关注的一项指标。

通过实际支出与预算的对比,来分析招聘预算做的是否合理、年度招聘计划是否符合实际情况等。

通过人均招聘成本的分析,可以有针对性的提出改进性措施,降低招聘成本提高招聘效果,结合公司、部门、岗位、职级、招聘渠道等维度可以有效的分析出问题。

相关推荐
大数据核心算法有哪些?
刘老师 数据分析师

1、A* 搜索算法——图形搜索算法,从给定起点到给定终点计算出路径。其中使用了一种启发式的估算,为每个节点估算通过该节点的最佳路径,并以之为各个地点排定次序。算法以得到的次序访问这些节点。因此,A*搜索算法是最佳优先搜索的范例。

2、集束搜索(又名定向搜索,Beam Search)——最佳优先搜索算法的优化。使用启发式函数评估它检查的每个节点的能力。不过,集束搜索只能在每个深度中发现最前面的m个最符合条件的节点,m是固定数字——集束的宽度。

3、二分查找(Binary Search)——在线性数组中找特定值的算法,每个步骤去掉一半不符合要求的数据。

4、分支界定算法(Branch and Bound)——在多种最优化问题中寻找特定最优化解决方案的算法,特别是针对离散、组合的最优化。

5、Buchberger算法——一种数学算法,可将其视为针对单变量最大公约数求解的欧几里得算法和线性系统中高斯消元法的泛化。

6、数据压缩——采取特定编码方案,使用更少的字节数(或是其他信息承载单元)对信息编码的过程,又叫来源编码。

7、Diffie-Hellman密钥交换算法——一种加密协议,允许双方在事先不了解对方的情况下,在不安全的通信信道中,共同建立共享密钥。该密钥以后可与一个对称密码一起,加密后续通讯。

8、Dijkstra算法——针对没有负值权重边的有向图,计算其中的单一起点最短算法。

9、离散微分算法(Discrete differentiation)。

数据分析思路都有哪些?
刘老师 数据分析师

1、趋势分析

最简单、最常见的数据分析方法,一般用于核心指标的长期跟踪,比如点击率、GMV、活跃用户数。可以看出数据有那些趋势上的变化,有没有周期性,有没有拐点等,继而分析原因。

2、多维分解

也就是通过不同的维度对于数据进行分解,以获取更加精细的数据洞察。举个例子,对网站维护进行数据分析,可以拆分出地区、访问来源、设备、浏览器等等维度。

3、用户分群

针对符合某种特定行为或背景信息的用户,进行特定的优化和分析,将多维度和多指标作为分群条件,有针对性地优化供应链,提升供应链稳定性。

4、漏斗分析

按照已知的转化路径,借助漏斗模型分析总体和每一步的转化情况。例如将漏斗图用于网站关键路径的转化率分析,不仅能显示用户的最终转化率,同时还可以展示每一节点的转化率。

5、留存分析

留存分析是一种用来分析用户参与情况/活跃程度的分析模型,考察进行初始行为的用户中,有多少人会进行后续行为。衡量留存的常见指标有次日留存率、7日留存率、30日留存率等。

6、A/B 测试

A/B测试是为了达到一个目标,采取了两套方案,通过实验观察两组方案的数据效果,判断两组方案的好坏,需要选择合理的分组样本、监测数据指标、事后数据分析和不同方案评估。

7、对比分析

分为横向对比(跟自己比)和纵向对比(跟别人比),常见的对比应用有A/B test,A/B test的关键就是保证两组中只有一个单一变量,其他条件保持一致。

8、交叉分析

交叉分析法就是将对比分析从多个维度进行交叉展现,进行多角度的结合分析,从中发现最为相关的维度来探索数据变化的原因。

注册电脑版

版权所有 2003-2020 广州环球青藤科技发展有限公司

绑定手机号

应《中华人民共和国网络安全法》加强实名认证机制要求,同时为更加全面的体验产品服务,烦请您绑定手机号.