问答详情

如何对招聘数据进行分析?

1423次观看
标签: 招聘数据 招聘数据分析
老师回答

1、过程数据

过程数据分析是对招聘流程进行优化和持续改进,过程数据的分析,我们可以直接采用漏斗图进行不同维度的分析,例如招聘团队、公司、部门、岗位、时间等维度。

2、结果数据

结果数据也是招聘KPI,它直接反映人力资源部门或者招聘团队的工作效果,甚至决定着人力资源部门或招聘团队能否跟上公司的发展节奏。

我们可以根据招聘计划完成率来调整招聘工作或者对其它模块工作提出改进建议,例如通过分析,我们得出招聘计划完成率最低的5个岗位,我们可以重点建立几个岗位的人才库储备人员、通过一系列措施留人、开展师带徒项目或后备人才项目提前储备人员等。

平均招聘周期决定着人力资源部门或招聘团队能否快速的把人员招聘到位,以便及时开展工作或接替离职人员工作。

3、渠道数据

渠道数据主要是分析各个招聘渠道的优劣以及在什么情况下采用何种招聘渠道最有效。渠道数据的分析主要是以招聘渠道维度来分析过程指标以及结果指标,同时可以结合部门、岗位、职级等维度来得到特定情况下最有效的招聘渠道。

例如我们可以来分析各个招聘渠道录用人数点录用总人数的比率,如果结合岗位维度,我们会发现招聘渠道1是招聘某岗位最好的渠道。

我们还可以通过各个招聘渠道的对比,来分析招聘成本支出情况。

如果再结合人均招聘成本情况,我们会发出使用最多的网络招聘成本最低,而现场招聘、校园招聘的成本是非常高的。再结合录用人数和录用率的对比,我们可以通过年度招聘计划来做一个最优招聘渠道组合,在这个基础上安排我们全年的招聘工作。

4、成本数据

招聘工作并不是无休止的投入,如果不计成本的投入,相信招聘工作也就非常好做,所以招聘成本指标是我们必须要关注的一项指标。

通过实际支出与预算的对比,来分析招聘预算做的是否合理、年度招聘计划是否符合实际情况等。

通过人均招聘成本的分析,可以有针对性的提出改进性措施,降低招聘成本提高招聘效果,结合公司、部门、岗位、职级、招聘渠道等维度可以有效的分析出问题。

免费直播

    相关推荐
    数据分析的5种细分方法有哪些?
    刘老师 数据分析师

    1.按时间细分

    时间可以细分为不同的跨度,包括年、月、周、日、时、分、秒等等,不同的时间跨度,数据表现可能大不相同。

    比如说,按照月度来看,产品的销量可能变化不大,但是如果细分到每一天,可能就有比较剧烈的变化,我们应该找到这些变化的数据,并分析变化背后的原因,而不是让它淹没在整月汇总数据的表象之中。

    2.按空间细分

    空间主要是指按地域进行划分,包括世界、洲、国家、省份、城市、区等等。

    比如说,把全国的 GDP 数据,细分到每一个省份。

    空间作为一个相对抽象的概念,也可以代表其他与业务相关的各种事物,比如产品、人员、类别等等,只要有助于理解事物的本质,都可以尝试拿来进行细分。

    3.按过程细分

    把业务细分为一些具体的过程,往往能够让复杂的问题简单化。

    比如说,把订单发货细分为 5 个过程,想办法提升每个过程的效率,从而缩短发货的时间。

    再比如,把用户的生命周期,细分为 5 个重要的过程,即:获取、激活、留存、盈利、推荐。

    4.按公式细分

    有时候一个指标,是可以用公式计算出来的。

    比如说,销售额 = 销售数量 * 平均单价,销售数量 = 新客户购买数量 + 老客户购买数量,以此类推。

    再比如,在财务分析中,权益净利率 = 资产净利率 * 权益乘数,其中:资产净利率 = 销售净利率 * 资产周转率,以此类推。

    5.按模型细分

    数据分析的模型有很多,我们可以根据业务的实际情况,选择合适的模型,在此基础上进行细分,得出相应的分析结论。

    比如说,按照波士顿矩阵,把企业产品细分为「市场占有率」和「销售增长率」两个维度,然后画一个四象限矩阵图,其中每个象限就代表一类产品,即:明星产品、金牛产品、瘦狗产品和问题产品,对每一类产品,分别建议采取不同的发展策略。

    再比如,按照 RFM 模型,把客户按三个维度进行细分,即:最近一次消费时间间隔(Recency)、消费频率(Frequency)和消费金额(Monetary),从而得到 8 种客户类别,从而有针对性地采取不同的营销策略。

    数据挖掘中实用分析方法有哪些?
    刘老师 数据分析师

    1.基于历史的MBR分析

    基于历史(Memory-Based Reasoning)的MBR分析方法最主要的概念是用已知的案例(case)来预测未来案例的一些属性(attribute),通常找寻最相似的案例来做比较。

    MBR中有两个主要的要素,分别为距离函数(distance function)与结合函数(combination function)。距离函数的用意在找出最相似的案例;结合函数则将相似案例的属性结合起来,以供预测之用。

    MBR的优点是它容许各种型态的数据,这些数据不需服从某些假设。另一个优点是其具备学习能力,它能藉由旧案例的学习来获取关于新案例的知识。较令人诟病的是它需要大量的历史数据,有足够的历史数据方能做良好的预测。此外记忆基础推理法在处理上亦较为费时,不易发现最佳的距离函数与结合函数。其可应用的范围包括欺骗行为的侦测、客户反应预测、医学诊疗、反应的归类等方面。

    2.购物篮分析

    购物篮分析(Market Basket Analysis)最主要的目的在于找出什么样的东西应该放在一起商业上的应用在藉由顾客的购买行为来了解是什么样的顾客以及这些顾客为什么买这些产品, 找出相关的联想(association)规则,企业藉由这些规则的挖掘获得利益与建立竞争优势。举例来说,零售店可藉由此分析改变置物架上的商品排列或是设计 吸引客户的商业套餐等等。

    购物篮分析基本运作过程包含下列三点:

    选择正确的品项:这里所指的正确乃是针对企业体而言,必须要在数以百计、千计品项中选择出真正有用的品项出来。

    经由对共同发生矩阵(co-occurrence matrix)的探讨挖掘出联想规则。

    克服实际上的限制:所选择的品项愈多,计算所耗费的资源与时间愈久(呈现指数递增),此时必须运用一些技术以降低资源与时间的损耗。

    购物篮分析技术可以应用在下列问题上:针对信用卡购物,能够预测未来顾客可能购买什么。对于电信与金融服务业而言,经由购物篮分析能够设计不同的服务组合以扩大利润。保险业能藉由购物篮分析侦测出可能不寻常的投保组合并作预防。对病人而言,在疗程的组合上,购物篮分析能作为是否这些疗程组合会导致并发症的判断依据。

    3.决策树

    决策树(Decision Trees)在解决归类与预测上有着极强的能力,它以法则的方式表达,而这些法则则以一连串的问题表示出来,经由不断询问问题最终能导出所需的结果。典型的决策树顶端是一个树根,底部有许多的树叶,它将纪录分解成不同的子集,每个子集中的字段可能都包含一个简单的法则。此外,决策树可能有着不同的外型,例如二元 树、三元树或混和的决策树型态。

    4.遗传算法

    遗传算法(Genetic Algorithm)学习细胞演化的过程,细胞间可经由不断的选择、复制、交配、突变产生更佳的新细胞。基因算法的运作方式也很类似,它必须预先建立好一个模式,再经由一连串类似产生新细胞过程的运作,利用适合函数(fitness function)决定所产生的后代是否与这个模式吻合,最后仅有最吻合的结果能够存活,这个程序一直运作直到此函数收敛到最佳解。基因算法在群集 (cluster)问题上有不错的表现,一般可用来辅助记忆基础推理法与类神经网络的应用。

    5.聚类分析

    聚类分析(Cluster Detection)这个技术涵盖范围相当广泛,包含基因算法、类神经网络、统计学中的群集分析都有这个功能。它的目标为找出数据中以前未知的相似群体,在许许多多的分析中,刚开始都运用到群集侦测技术,以作为研究的开端。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司