问答详情

质量管理中的统计方法有哪些?

1380次观看
标签: 质量管理 质量管理统计方法
老师回答

1、统计分析表法和措施计划表法:

质量管理讲究科学性,一切凭数据说话。因此对生产过程中的原始质量数据的统计分析十分重要,为此必须根据本班组,本岗位的工作特点设计出相应的表格。

2、排列图法:

排列图法是找出影响产品质量主要因素的一种有效方法。

收集数据,即在一定时期里收集有关产品质量问题的数据。如,可收集1个月或3个月或半年等时期里的废品或不合格品的数据。

作排列图。即根据上表数据进行作图。需要注意的是累计百分率应标在每一项目的右侧,然后从原点开始,点与点之间以直线连接,从而作出帕累托曲线。

3、因果分析图法:

因果分析图又叫特性要因图。按其形状,有人又叫它为树枝图或鱼刺图。它是寻找质量问题产生原因的一种有效工具。

画因果分析图的注意事项:影响产品质量的大原因,通常从五个大方面去分析,即人、机器、原材料、加工方法和工作环境。每个大原因再具体化成若干个中原因,中原因再具体化为小原因,越细越好,直到可以采取措施为止。

免费直播

    相关推荐
    数据分析惯用的5种思维方法是什么?
    刘老师 数据分析师

    一、对比法

    对比法就是用两组或两组以上的数据进行比较,是最通用的方法。

    我们知道孤立的数据没有意义,有对比才有差异。一些直接描述事物的变量,如长度、数量、高度、宽度等。通过对比得到比率数据,增速、效率、效益等指标,这才是数据分析时常用的。

    比如用于在时间维度上的同比和环比、增长率、定基比,与竞争对手的对比、类别之间的对比、特征和属性对比等。对比法可以发现数据变化规律,使用频繁,经常和其他方法搭配使用。

    二、象限法

    通过对两种及以上维度的划分,运用坐标的方式表达出想要的价值。由价值直接转变为策略,从而进行一些落地的推动。象限法是一种策略驱动的思维,常于产品分析、市场分析、客户管理、商品管理等。

    三、二八法/帕累托分析

    二八法也可以叫帕累托法则,源于经典的二八法则。比如在个人财富上可以说世界上20%的人掌握着80%的财富。而在数据分析中,则可以理解为20%的数据产生了80%的效果需要围绕这20%的数据进行挖掘。往往在使用二八法则的时候和排名有关系,排在前20%的才算是有效数据。二八法是抓重点分析,适用于任何行业。找到重点,发现其特征,然后可以思考如何让其余的80%向这20%转化,提高效果。

    一般地,会用在产品分类上,去测量并构建ABC模型。比如某零售企业有500个SKU以及这些SKU对应的销售额,那么哪些SKU是重要的呢,这就是在业务运营中分清主次的问题。

    常见的做法是将产品SKU作为维度,并将对应的销售额作为基础度量指标,将这些销售额指标从大到小排列,并计算截止当前产品SKU的销售额累计合计占总销售额的百分比。

    百分比在 70%(含)以内,划分为 A 类。

    百分比在 70~90%(含)以内,划分为 B 类。

    百分比在 90~100%(含)以内,划分为 C 类。

    以上百分比也可以根据自己的实际情况调整。

    ABC分析模型,不光可以用来划分产品和销售额,还可以划分客户及客户交易额等。比如给企业贡献80%利润的客户是哪些,占比多少。假设有20%,那么在资源有限的情况下,就知道要重点维护这20%类客户。

    四、漏斗法

    漏斗法即是漏斗图,有点像倒金字塔,是一个流程化的思考方式,常用于像新用户的开发、购物转化率这些有变化和一定流程的分析中。

    五、公式法

    所谓公式法就是针对某个指标,用公式层层分解该指标的影响因素。

    举例:分析某产品的销售额较低的原因,用公式法分解:

    ①某产品销售额=销售量 X 产品单价

    ②销售量=渠道A销售量 + 渠道B销售量 + 渠道C销售量 + …

    ③渠道销售量=点击用户数 X 下单率

    ④点击用户数=曝光量 X 点击率

    第一层:找到产品销售额的影响因素。某产品销售额=销售量 X 产品单价。是销量过低还是价格设置不合理?

    第二层:找到销售量的影响因素。分析各渠道销售量,对比以往,是哪些过低了。

    第三层:分析影响渠道销售量的因素。渠道销售量=点击用户数X 下单率。是点击用户数低了,还是下单量过低。如果是下单量过低,需要看一下该渠道的广告内容针对的人群和产品实际受众符合度高不高。

    第四层:分析影响点击的因素。点击用户数=曝光量X点击率。是曝光量不够还是点击率太低,点击率低需要优化广告创意,曝光量则和投放的渠道有关。

    通过对销售额的逐层拆解,细化评估以及分析的粒度。

    公式拆解法是针对问题的层级式解析,在拆解时,对因素层层分解,层层剥尽。

    数据分析常见流程有哪些?
    刘老师 数据分析师

    1、为什么分析?

    首先,你得知道为什么分析?弄清楚此次数据分析的目的。比如,什么类型的客户交货期总是拖延。你所有的分析都的围绕这个为什么来回答。避免不符合目标反复返工,这个过程会很痛苦。

    2、分析目标是谁?

    要牢记清楚的分析因子,统计维度是金额,还是产品,还是供应商行业竞争趋势,还是供应商规模等等。避免把金额当产品算,把产品当金额算,算出的结果是差别非常大的。

    3、想达到什么效果?

    通过分析各个维度产品类型,公司采购周期,采购条款,找到真正的问题。例如这次分析的薄弱环节供应商,全部集中采购,和保持现状,都不符合利益最大化原则。通过分析,找到真正的问题根源,发现精细化采购管理已经非常必要了。

    4、需要哪些数据?

    采购过程涉及的数据,很多,需要哪些源数据?采购总额?零部件行业竞争度?货款周期?采购频次?库存备货数?客户地域因子?客户规模?等等列一个表。避免不断增加新的因子。

    5、如何采集?

    数据库中供应商信息采集,平时供应商各种信息录入,产品特性录入等,做数据分析一定要有原料,否则巧妇难为无米之炊。

    6、如何整理?

    整理数据是门技术活。不得不承认EXCEL是个强大工具,数据透视表的熟练使用和技巧,作为支付数据分析必不可少,各种函数和公式也需要略懂一二,避免低效率的数据整理。Spss也是一个非常优秀的数据处理工具,特别在数据量比较大,而且当字段由特殊字符的时候,比较好用。

    7、如何分析?

    整理完毕,如何对数据进行综合分析,相关分析?这个是很考验逻辑思维和推理能力的。同时分析推理过程中,需要对产品了如指掌,对供应商很了解,对采购流程很熟悉。看似一个简单的数据分析,其实是各方面能力的体现。首先是技术层面,对数据来源的抽取-转换-载入原理的理解和认识;其实是全局观,对季节性、公司等层面的业务有清晰的了解;最后是专业度,对业务的流程、设计等了如指掌。练就数据分析的洪荒之力并非一朝一夕之功,而是在实践中不断成长和升华。一个好的数据分析应该以价值为导向,放眼全局、立足业务,用数据来驱动增长。

    8、如何展现和输出?

    数据可视化也是一个学问。如何用合适的图表表现?每一种图表的寓意是什么?下面列举下常用的8个图表:

    1)折线图:合适用于随时间而变化的连续数据,例如随时间收入变化,及增长率变化。

    2)柱型图:主要用来表示各组数据之间的差别。主要有二维柱形图、三维柱形图、圆柱图、圆锥图和棱锥图。

    3)堆积柱形图:堆积柱形图不仅可以显示同类别中每种数据的大小,还可以显示总量的大小。

    4)线-柱图:这种类型的图不仅可以显示出同类别的比较,还可以显示出趋势情况。

    5)条形图:类似于横向的柱状图,和柱状图的展示效果相同,主要用于各项类的比较。

    6)饼图:主要显示各项占比情况。饼图一般慎用,除非占比区别非常明显。因为肉眼对对饼图的占比比例分辨并不直观。而且饼图的项,一般不要超过6项。6项后建议用柱形图更为直观。

    7)复合饼图:一般是对某项比例的下一步分析。

    8)母子饼图:可直观地分析项目的组成结构与比重

    图表不必太花哨,一个表说一个问题就好。用友好的可视化图表,节省阅读者的时间,也是对阅读者的尊重。

    有一些数据,辛辛苦苦做了整理和分析,最后发现对结论输出是没有关系的,虽然做了很多工作,但不能为了体现工作量而堆砌数据。

    在展现的过程中,请注明数据的来源,时间,指标的说明,公式的算法,不仅体现数据分析的专业度,更是对报告阅读者的尊重。

    数据分析的5种细分方法有哪些?
    刘老师 数据分析师

    1.按时间细分

    时间可以细分为不同的跨度,包括年、月、周、日、时、分、秒等等,不同的时间跨度,数据表现可能大不相同。

    比如说,按照月度来看,产品的销量可能变化不大,但是如果细分到每一天,可能就有比较剧烈的变化,我们应该找到这些变化的数据,并分析变化背后的原因,而不是让它淹没在整月汇总数据的表象之中。

    2.按空间细分

    空间主要是指按地域进行划分,包括世界、洲、国家、省份、城市、区等等。

    比如说,把全国的 GDP 数据,细分到每一个省份。

    空间作为一个相对抽象的概念,也可以代表其他与业务相关的各种事物,比如产品、人员、类别等等,只要有助于理解事物的本质,都可以尝试拿来进行细分。

    3.按过程细分

    把业务细分为一些具体的过程,往往能够让复杂的问题简单化。

    比如说,把订单发货细分为 5 个过程,想办法提升每个过程的效率,从而缩短发货的时间。

    再比如,把用户的生命周期,细分为 5 个重要的过程,即:获取、激活、留存、盈利、推荐。

    4.按公式细分

    有时候一个指标,是可以用公式计算出来的。

    比如说,销售额 = 销售数量 * 平均单价,销售数量 = 新客户购买数量 + 老客户购买数量,以此类推。

    再比如,在财务分析中,权益净利率 = 资产净利率 * 权益乘数,其中:资产净利率 = 销售净利率 * 资产周转率,以此类推。

    5.按模型细分

    数据分析的模型有很多,我们可以根据业务的实际情况,选择合适的模型,在此基础上进行细分,得出相应的分析结论。

    比如说,按照波士顿矩阵,把企业产品细分为「市场占有率」和「销售增长率」两个维度,然后画一个四象限矩阵图,其中每个象限就代表一类产品,即:明星产品、金牛产品、瘦狗产品和问题产品,对每一类产品,分别建议采取不同的发展策略。

    再比如,按照 RFM 模型,把客户按三个维度进行细分,即:最近一次消费时间间隔(Recency)、消费频率(Frequency)和消费金额(Monetary),从而得到 8 种客户类别,从而有针对性地采取不同的营销策略。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司