问答详情

运营岗数据分析会用到哪些工具?

1130次观看
标签: 运营岗数据分析 数据分析工具 数据分析运营
老师回答

数据运营工具:Excel+SQL+PPT+基础的统计学内容+运营思维

工具的运用上,Excel很重要,是用来分析,SQL是用来取数的,PPT是用来写报告的,也可能会有不需要SQL的公司,但作为一个对自己有要求的数据分析师,还是掌握一下SQL吧。

免费直播

    相关推荐
    数据挖掘中实用分析方法有哪些?
    刘老师 数据分析师

    1.基于历史的MBR分析

    基于历史(Memory-Based Reasoning)的MBR分析方法最主要的概念是用已知的案例(case)来预测未来案例的一些属性(attribute),通常找寻最相似的案例来做比较。

    MBR中有两个主要的要素,分别为距离函数(distance function)与结合函数(combination function)。距离函数的用意在找出最相似的案例;结合函数则将相似案例的属性结合起来,以供预测之用。

    MBR的优点是它容许各种型态的数据,这些数据不需服从某些假设。另一个优点是其具备学习能力,它能藉由旧案例的学习来获取关于新案例的知识。较令人诟病的是它需要大量的历史数据,有足够的历史数据方能做良好的预测。此外记忆基础推理法在处理上亦较为费时,不易发现最佳的距离函数与结合函数。其可应用的范围包括欺骗行为的侦测、客户反应预测、医学诊疗、反应的归类等方面。

    2.购物篮分析

    购物篮分析(Market Basket Analysis)最主要的目的在于找出什么样的东西应该放在一起商业上的应用在藉由顾客的购买行为来了解是什么样的顾客以及这些顾客为什么买这些产品, 找出相关的联想(association)规则,企业藉由这些规则的挖掘获得利益与建立竞争优势。举例来说,零售店可藉由此分析改变置物架上的商品排列或是设计 吸引客户的商业套餐等等。

    购物篮分析基本运作过程包含下列三点:

    选择正确的品项:这里所指的正确乃是针对企业体而言,必须要在数以百计、千计品项中选择出真正有用的品项出来。

    经由对共同发生矩阵(co-occurrence matrix)的探讨挖掘出联想规则。

    克服实际上的限制:所选择的品项愈多,计算所耗费的资源与时间愈久(呈现指数递增),此时必须运用一些技术以降低资源与时间的损耗。

    购物篮分析技术可以应用在下列问题上:针对信用卡购物,能够预测未来顾客可能购买什么。对于电信与金融服务业而言,经由购物篮分析能够设计不同的服务组合以扩大利润。保险业能藉由购物篮分析侦测出可能不寻常的投保组合并作预防。对病人而言,在疗程的组合上,购物篮分析能作为是否这些疗程组合会导致并发症的判断依据。

    3.决策树

    决策树(Decision Trees)在解决归类与预测上有着极强的能力,它以法则的方式表达,而这些法则则以一连串的问题表示出来,经由不断询问问题最终能导出所需的结果。典型的决策树顶端是一个树根,底部有许多的树叶,它将纪录分解成不同的子集,每个子集中的字段可能都包含一个简单的法则。此外,决策树可能有着不同的外型,例如二元 树、三元树或混和的决策树型态。

    4.遗传算法

    遗传算法(Genetic Algorithm)学习细胞演化的过程,细胞间可经由不断的选择、复制、交配、突变产生更佳的新细胞。基因算法的运作方式也很类似,它必须预先建立好一个模式,再经由一连串类似产生新细胞过程的运作,利用适合函数(fitness function)决定所产生的后代是否与这个模式吻合,最后仅有最吻合的结果能够存活,这个程序一直运作直到此函数收敛到最佳解。基因算法在群集 (cluster)问题上有不错的表现,一般可用来辅助记忆基础推理法与类神经网络的应用。

    5.聚类分析

    聚类分析(Cluster Detection)这个技术涵盖范围相当广泛,包含基因算法、类神经网络、统计学中的群集分析都有这个功能。它的目标为找出数据中以前未知的相似群体,在许许多多的分析中,刚开始都运用到群集侦测技术,以作为研究的开端。

    数据分析师应该具备的素质有哪些?
    刘老师 数据分析师

    1、态度严谨负责

    严谨负责是数据分析师的必备素质之一,只有奔着严谨负责的态度,才能保证数据的客观、准确。在企业里,数据分析师可以说是企业的医生,他们通过对企业运营数据的分析,为企业寻找症结的问题。

    2、好奇心强烈

    好奇心热皆有之,但是作为数据分析师,这份好奇心就应该更加强烈,要积极主动地发现挖掘隐藏在数据内部的真相。在数据分析师的脑子里,应该充满着无数个“为什么”,为什么是这样的结果,为什么不是那样的结果,导致这个结果的原因是什么,为什么结果是不预期的那样等等,这一系列问题都要在进行分析时提出来,并且通过通过数据分析给自己一个满意的答案。

    3、逻辑思维清晰

    除了一颗探索真相的好奇心,数据分析师还需要具备缜密的思维和清晰的逻辑推理能力。

    通常从事数据分析时所面对的商业问题较为复杂,要考虑错综复杂的成因,分析所面对的各种复杂的环境因素,并在若干发展可能性中选择一个最优的方向。这就需要数据分析师对事实的足够了解,同时也是需要真正理清问题的整体以及局部的结构进而理清结构中相互的逻辑关系。

    4、擅长模仿

    在做数据分析时,有自己的想法固然重要,但是“前车之鉴”也是非常有必要学习的,它能帮助数据分析师迅速的成长,因此,模仿是快速提高学习成果的有效方法。模仿主要是参考他人优秀的思路和方法,成功的模仿需要领会他人方法的精髓,理解其成分析原理。

    5、勇于创新

    通过模仿可以借鉴他人的成功经验,但模仿时间不宜太长,每次模仿后都要进行总结,提升可以改进的地方,甚至要有所创新。创新是一个优秀数据分析师应具备的精神,只有不断创新,才能提高自己的分析水平。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司