问答详情

转行做大数据行业怎么样?

1295次观看
标签: 转行大数据 转行大数据行业
老师回答

大数据时代则对从业人员素质的要求越来越高,因为数据处理变得越来越复杂,数据人才的竞争也越来越激烈,很多大公司都在寻找尖端人才。而且,大到国防、金融,小到跟生活息息相关的物流、购物、医疗、交通等,都日益需要大数据的支撑。

大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支zhi撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。

此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。

免费直播

    精选课程
    相关推荐
    数据科学与大数据技术是什么专业?
    张老师 大数据工程师

    “数据科学与大数据技术”专业是近两年才设立的新专业。“数据科学与大数据技术”专业有着很好的就业前景并且就业的宽度广,就业薪资待遇水平高,缺点可能在于专业设立较新,教学课程设置上可能无法跟上大数据人才培养的技能需求。

    “数据科学与大数据技术”专业的人才培养方向:

    分析类岗位

    分析类工程师。使用统计模型、数据挖掘、机器学习及其他方法,进行数据清洗、数据分析、构建行业数据分析模型,为客户提供有价值的信息,满足客户需求。

    算法工程师。大数据方向,和专业工程师一起从系统应用的角度,利用数据挖掘/统计学习的理论和方法解决实际问题;人工智能方向,根据人工智能产品需求完成技术方案设计及算法设计和核心模块开发,组织解决项目开发过程中的重大技术问题。

    研发类岗位

    架构工程师。负责Hadoop集群架构设计开发、搭建、管理、运维、调优,从数据采集到数据加工,从数据清洗到数据抽取,从数据统计到数据分析,实现大数据全产业线上的应用分析设计。

    开发工程师。基于hadoop、spark等构建数据分析平台,进行设计、开发分布式计算业务,负责机器学习、深度学习领域的开发工作。

    运维工程师。负责大数据基础平台的运维,保障平台的稳定可用,参与设计大数据自动化运维、监控、故障处理工具。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司