问答详情

数据工程师所需的关键技能有哪些?

1039次观看
标签: 数据工程师 数据工程师技能
老师回答

1.大数据架构的工具与组件

数据工程师更关注分析基础架构,因此所需的大部分技能都是以架构为中心的。

2.深入了解SQL和其它数据库解决方案

数据工程师需要熟悉数据库管理系统,深入了解SQL至关重要。同样其它数据库解决方案,例如Cassandra或BigTable也须熟悉,因为不是每个数据库都是由可识别的标准来构建。

3.数据仓库和ETL工具

数据仓库和ETL经验对于数据工程师至关重要。像Redshift或Panoply这样的数据仓库解决方案,以及ETL工具,比如StitchData或Segment都非常有用。此外,数据存储和数据检索经验同样重要,因为处理的数据量是个天文数字。

4.基于Hadoop的分析(HBase,Hive,MapReduce等)

对基于Apache Hadoop的分析有深刻理解是这个领域的一个非常必要的需求,一般情况下HBase,Hive和MapReduce的知识存储是必需的。

5.编码

说到解决方案,编码与开发能力是一个重要的优点(这也是许多职位的要求),你要熟悉Python,C/C++,Java,Perl,Golang或其它语言,这会非常有价值。

6.机器学习

虽然数据工程师主要关注的是数据科学,但对数据处理技术的理解会加分,比如一些统计分析知识和基础数据建模。

免费直播

    相关推荐
    数据分析的误区有哪些?
    刘老师 数据分析师

    1、数据分析需要大量投资

    如今,似乎对每一项新技术的投入都必须通过严格的财务支出的筛选过程。“它需要多少费用?”——是IT和业务经理在提议启动项目或部署新工具时需要首先考虑的问题之一。

    有些人认为数据分析本质上是一项代价高昂的工作,因此仅限于拥有大量预算或大量内部资源的企业机构。但是事实并非如此,现在市场上有很多开源工具和其他工具能够帮助展示数据分析的价值;并且基于云系统的大数据架构,也会比传统的数据仓库便宜得多。你只需要明确内部数据存储以及要解决的问题,就可以轻松的在云上使用分析来解决业务问题。

    此外,数据分析通常用于实现三个结果:提高流程效率、实现收入增长和主动进行风险管理,总的来说,数据分析在任何公司的应用中都带来了巨大的成本效益。

    2、你需要“大数据”才能执行分析

    对于许多人来说,大数据和分析的概念是相辅相成的,企业需要在执行分析之前收集大量数据,以便生成业务洞察,改进决策制定等。

    当然,大数据分析的优势也很明确,拥有这些资源的公司利用大数据存储作为促进分析工作的一部分,获得了显着的竞争优势。但是大数据却并不是分析必不可少的搭配。

    分析师需要特定的数据,而不是更多的数据。要想更好地支持决策和提高绩效,企业必须更多的考虑业务用户,确定他们需要访问哪些数据,如何呈现数据,而不是关注更多的数据。95%以上的用户会寻找和他们工作相关的信息来支持他们进行决策,来提高业务表现,所以企业需要以最简单的格式向他们提供这些信息,帮助他们快速定位重要信息。

    3、分析消除了人类的偏见

    自动化系统执行的方式不应该存在偏见,但技术是由人类建立的,因此消除所有偏见几乎是不可能的。

    有些人认为分析和机器学习消除了人类的偏见,不幸的是,这并没有实现。算法和分析使用“训练数据”进行调整,并将重现“训练数据”所具有的任何特征,在某些情况下,这会在分析过程中引入良性偏见,但也有可能带来更严重的偏见——因为“算法这么说”并不意味着答案是公平的或者有用的。

    4、最好的算法意味着绝对的胜利

    事实证明,有了足够的数据,有时算法无关紧要。谷歌的工程师认为,数据有着不合理有效性 ,简单的统计模型,加上极大量的数据,比包含大量特征和总结的“智能优越模型”能输出更优质的结果。

    因此,在某些情况下,只需处理更大量的数据就可以获得最佳效果。

    5、算法是安全的

    人们固执地信任统计模型和算法,并且随着分析程序的组织构建,他们会越来越依赖复杂的模型来支持决策。这或许是因为用户并不觉得他们有能力挑战模型,因此他们必须相信构建它们的“聪明人”。

    比如,在过去的50到60年里,我们反复听到“人工智能将在20年内接管人类工作”的言论,现在也还是有人反复强调这种观点。在我们可以完全信任机器学习和它们输出的结果之前,还有很多事情要做。在那之前,我们需要挑战构建算法和模型的人,让他们解释如何得到答案。这并不是说我们不能依赖于结果,而是说我们需要透明度,这样我们才可以信任和验证分析结果。

    数据分析方法论有哪些?
    刘老师 数据分析师

    1、PEST分析法

    PEST,也就是政治(Politics)、经济(Economy)、社会(Society)、技术(Technology),能从各个方面把握宏观环境的现状及变化趋势,主要用户行业分析。

    宏观环境又称一般环境,是指影响一切行业和企业的各种宏观力量。

    对宏观环境因素作分析时,由于不同行业和企业有其自身特点和经营需要,分析的具体内容会有差异,但一般都应对政治、经济、技术、社会,这四大类影响企业的主要外部环境因素进行分析。

    政治环境:政治体制、经济体制、财政政策、税收政策、产业政策、投资政策等。

    社会环境:人口规模、性别比例、年龄结构、生活力式、购买习惯、城市特点等。

    技术环境:折旧和报废速度、技术更新速度、技术传播速度、技术商品化速度等。

    经济环境:GDP 及增长率、进出口总额及增长率、利率、汇率、通货膨胀率、消费价格指数、居民可支配收入、失业率、劳动生产率等。

    2、5W2H分析法

    5W2H,即为什么(Why)、什么事(What)、谁(Who)、什么时候(When)、什么地方(Where)、如何做(How)、什么价格(How much),主要用于用户行为分析、业务问题专题分析、营销活动等。

    该分析方法又称为七何分析法,是一个非常简单、方便又实用的工具,以用户购买行为为例:

    Why:用户为什么要买?产品的吸引点在哪里?

    What:产品提供的功能是什么?

    Who:用户群体是什么?这个群体的特点是什么?

    When:购买频次是多少?

    Where:产品在哪里最受欢迎?在哪里卖出去?

    How:用户怎么购买?购买方式什么?

    How much:用户购买的成本是多少?时间成本是多少?

    3、SWOT分析法

    SWOT分析法也叫态势分析法,S (strengths)是优势、W (weaknesses)是劣势,O (opportunities)是机会、T (threats)是威胁或风险。

    SWOT分析法是用来确定企业自身的内部优势、劣势和外部的机会和威胁等,通过调查列举出来,并依照矩阵形式排列,然后用系统分析的思想,把各种因素相互匹配起来加以分析。

    运用这种方法,可以对研究对象所处的情景进行全面、系统、准确的研究,从而将公司的战略与公司内部资源、外部环境有机地结合起来。

    4、4P营销理论

    4P即产品(Product)、价格(Price)、渠道(Place)、推广(Promotion),在营销领域,这种以市场为导向的营销组合理论,被企业应用最普遍。

    可以说企业的一切营销动作都是在围绕着4P理论进行,也就是将:产品、价格、渠道、推广。通过将四者的结合、协调发展,从而提高企业的市场份额,达到最终获利的目的。

    产品:从市场营销的角度来看,产品是指能够提供给市场,被入们使用和消费并满足人们某种需要的任何东西,包括有形产品、服务、人员、组织、观念或它们的组合。

    价格:是指顾客购买产品时的价格,包括基本价格、折扣价格、支付期限等。影响定价的主要因素有三个:需求、成本与竞争。

    渠道:是指产品从生产企业流转到用户手上全过程中所经历的各个环节。

    促销:是指企业通过销售行为的改变来刺激用户消费,以短期的行为(比如让利、买一送一,营销现场气氛等等)促成消费的增长,吸引其他品牌的用户或导致提前消费来促进销售的增长。广告、宣传推广、人员推销、销售促进是一个机构促销组合的四大要素。

    5、逻辑树法

    逻辑树又称问题树、演绎树或分解树等。它是把一个已知问题当成“主干”,然后开始考虑这个问题和哪些相关问题有关,也就是“分支”。逻辑树能保证解决问题的过程的完整性,它能将工作细分为便于操作的任务,确定各部分的优先顺序,明确地把责任落实到个人。

    逻辑树的使用必须遵循以下三个原则:

    要素化:把相同的问题总结归纳成要素。

    框架化:将各个要素组织成框架。遵守不重不漏的原则。

    关联化:框架内的各要素保持必要的相互关系,简单而不独立。

    6、AARRR模型

    AARRR模型是所有运营人员都要了解的一个数据模型,从整个用户生命周期入手,包括获取(Acquisition)、激活(Activition)、留存(Retention)、变现(Revenue)和传播(Refer)。

    每个环节分别对应生命周期的5个重要过程,即从获取用户,到提升活跃度,提升留存率,并获取收入,直至最后形成病毒式传播。

    让大数据分析更有效的5种技术措施有哪些?
    刘老师 数据分析师

    (1)优化数据收集

    数据收集是最终导致业务决策的事件链中的第一步,确保收集的数据和业务感兴趣的指标的相关性非常重要。

    定义对企业有影响的数据类型,以及分析如何增加价值。基本上,考虑客户行为,以及这将对企业的业务有何适用性,然后使用此数据进行分析。

    存储和管理数据是数据分析中的重要一步。因此,必须保持数据质量和分析效率。

    (2)清除垃圾数据

    垃圾数据是大数据分析的祸患。这包括不准确,冗余或不完整的客户信息,可能会对算法造成严重破坏,并导致分析结果不佳。根据垃圾数据做出的决策可能会带来麻烦。

    清洁数据至关重要,涉及丢弃不相关的数据,只保留高品质的数据,当前,为了获得完整和相关的数据,人工干预不是理想的模式,不可持续并且受主观影响,因此数据库本身需要被清理。这种类型的数据以各种方式渗透到系统中,其中包括随时间推移而变化,如更改客户信息或数据仓库中存储可能会损坏数据集。垃圾数据可能会对营销和潜在客户生产等行业产生明显的影响,但通过基于故障信息的业务决策,财务和客户关系也会受到不利影响。其后果也是广泛的,包括挪用资源,浪费时间和精力。

    解决垃圾数据难题的方法是确保数据进入系统得到干净的控制。具体来说,重复免费,完整和准确的信息。如今,那些具有专门从事反调试技术和清理数据的应用程序和企业,可以对任何对大数据分析感兴趣的公司进行调查。数据清洁是市场营销人员的首要任务,因为数据质量差的连锁效应可能会大大提高企业成本。

    为了获得最大的数据量,企业必须花时间确保质量足以准确地查看业务决策和营销策略。

    (3)标准化数据集

    在大多数商业情况下,数据来自各种来源和各种格式。这些不一致可能转化为错误的分析结果,这将会大大扭曲统计推断结果。为了避免这种可能性,必须决定数据的标准化框架或格式,并严格遵守。

    (4)数据整合

    大多数企业如今组成不同的自治部门,因此许多企业都有隔离的数据存储库或数据“孤岛”。这是具有挑战性的,因为来自一个部门的客户信息的更改将不会转移到另一个部门,因此他们将根据不准确的源数据进行决策。

    为了解决这个问题,采用中央数据管理平台是必要的,整合所有部门,从而确保数据分析的准确性更高,所有部门的任何变化都可以立即访问。

    (5)数据隔离

    即使数据干净,将其组织和集成在一起,也可能是分析问题。在这种情况下,将数据分成几组是有帮助的,同时牢记分析正在尝试实现什么。这样,可以分析子群体内的趋势,这些趋势可能更有意义并具有更大的价值。当查看可能与整个数据集可能无关的高度具体的趋势和行为时尤其如此。

    数据质量对大数据分析至关重要。许多公司试图采用分析软件,但却没有考虑到进入系统做什么。这将导致不准确的推断和解释,可能代价昂贵,并且对企业造成损害。一个定义明确,管理良好的数据库管理平台是使用大数据分析的企业不可或缺的工具。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司