问答详情

大数据专业需要学习哪些语言?

2766次观看
标签: 大数据专业 大数据专业语言
老师回答

1、Java

大数据的本质无非就是海量数据的计算、查询与存储,后台开发很容易接触到大数据量存取的应用场景,所以 Java 语言有着天然优势,现在大数据的组件很多都是用 Java 开发的,比如 HDFS、Yarn、HBase、MapReduce、ZooKeeper等等。

2、Python

Python 的优势在于资源丰富,拥有坚实的数值算法、图标和数据处理基础设施,建立了非常良好的生态环境。并不是所有的企业都能自己生产大量数据用于决策辅助,更多的互联网企业都是靠爬虫来抓取互联网数据进行分析,而 Python 在网络爬虫领域有着强势地位。Python 的战略定位就是做一种简单、易用但专业、严谨的通用言语组合。Python 语法简捷而清晰,对底层做了很好的封装,是一种很容易上手的高级语言。更重要的是, Python 的包装能力、可组合性、可嵌入性都很好,可以把各种复杂性包装在 Python 模块里,暴露出漂亮的接口。

3、Scala

Scala 在 JVM 上运行,基本上成功地结合了函数范式和面向对象范式。目前,它在金融界和需要处理海量数据的公司企业中取得了巨大进展。Scala 通常采用一种大规模分布式方式来处理数据,它还驱动着像 Spark 和 Kafka 这样的大数据处理平台,也被 Twitter 和 LinkedIn 这样的大型企业所使用。

免费直播

    精选课程
    相关推荐
    数据科学与大数据技术是什么专业?
    张老师 大数据工程师

    “数据科学与大数据技术”专业是近两年才设立的新专业。“数据科学与大数据技术”专业有着很好的就业前景并且就业的宽度广,就业薪资待遇水平高,缺点可能在于专业设立较新,教学课程设置上可能无法跟上大数据人才培养的技能需求。

    “数据科学与大数据技术”专业的人才培养方向:

    分析类岗位

    分析类工程师。使用统计模型、数据挖掘、机器学习及其他方法,进行数据清洗、数据分析、构建行业数据分析模型,为客户提供有价值的信息,满足客户需求。

    算法工程师。大数据方向,和专业工程师一起从系统应用的角度,利用数据挖掘/统计学习的理论和方法解决实际问题;人工智能方向,根据人工智能产品需求完成技术方案设计及算法设计和核心模块开发,组织解决项目开发过程中的重大技术问题。

    研发类岗位

    架构工程师。负责Hadoop集群架构设计开发、搭建、管理、运维、调优,从数据采集到数据加工,从数据清洗到数据抽取,从数据统计到数据分析,实现大数据全产业线上的应用分析设计。

    开发工程师。基于hadoop、spark等构建数据分析平台,进行设计、开发分布式计算业务,负责机器学习、深度学习领域的开发工作。

    运维工程师。负责大数据基础平台的运维,保障平台的稳定可用,参与设计大数据自动化运维、监控、故障处理工具。

    大数据预测分析方法有哪些?
    刘老师 大数据工程师

    1、可视化分析

    大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。

    2、数据挖掘算法

    大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。

    3、预测性分析能力

    大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。

    4、数据质量和数据管理

    大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司