问答详情

什么是数据治理?

1787次观看
标签: 数据治理
老师回答

数据治理是流程、角色、政策、标准和指标的集合,可确保有效和高效地使用信息,使企业能够实现其目标。它建立了流程和职责,以确保整个企业或企业中使用的数据质量和安全性。数据治理定义了谁可以对什么数据、在什么情况下、使用什么方法采取什么行动。

免费直播

    相关推荐
    数据分析思路都有哪些?
    刘老师 数据分析师

    1、趋势分析

    最简单、最常见的数据分析方法,一般用于核心指标的长期跟踪,比如点击率、GMV、活跃用户数。可以看出数据有那些趋势上的变化,有没有周期性,有没有拐点等,继而分析原因。

    2、多维分解

    也就是通过不同的维度对于数据进行分解,以获取更加精细的数据洞察。举个例子,对网站维护进行数据分析,可以拆分出地区、访问来源、设备、浏览器等等维度。

    3、用户分群

    针对符合某种特定行为或背景信息的用户,进行特定的优化和分析,将多维度和多指标作为分群条件,有针对性地优化供应链,提升供应链稳定性。

    4、漏斗分析

    按照已知的转化路径,借助漏斗模型分析总体和每一步的转化情况。例如将漏斗图用于网站关键路径的转化率分析,不仅能显示用户的最终转化率,同时还可以展示每一节点的转化率。

    5、留存分析

    留存分析是一种用来分析用户参与情况/活跃程度的分析模型,考察进行初始行为的用户中,有多少人会进行后续行为。衡量留存的常见指标有次日留存率、7日留存率、30日留存率等。

    6、A/B 测试

    A/B测试是为了达到一个目标,采取了两套方案,通过实验观察两组方案的数据效果,判断两组方案的好坏,需要选择合理的分组样本、监测数据指标、事后数据分析和不同方案评估。

    7、对比分析

    分为横向对比(跟自己比)和纵向对比(跟别人比),常见的对比应用有A/B test,A/B test的关键就是保证两组中只有一个单一变量,其他条件保持一致。

    8、交叉分析

    交叉分析法就是将对比分析从多个维度进行交叉展现,进行多角度的结合分析,从中发现最为相关的维度来探索数据变化的原因。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司