问答详情

数据分析师要具备哪些技能?

1144次观看
标签: 数据分析师 数据分析师技能
老师回答

1、懂业务

从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。

2、懂管理

一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。

3、懂分析

指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。

4、懂工具

指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。

5、懂设计

懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。

免费直播

    相关推荐
    数据分析常见流程有哪些?
    刘老师 数据分析师

    1、为什么分析?

    首先,你得知道为什么分析?弄清楚此次数据分析的目的。比如,什么类型的客户交货期总是拖延。你所有的分析都的围绕这个为什么来回答。避免不符合目标反复返工,这个过程会很痛苦。

    2、分析目标是谁?

    要牢记清楚的分析因子,统计维度是金额,还是产品,还是供应商行业竞争趋势,还是供应商规模等等。避免把金额当产品算,把产品当金额算,算出的结果是差别非常大的。

    3、想达到什么效果?

    通过分析各个维度产品类型,公司采购周期,采购条款,找到真正的问题。例如这次分析的薄弱环节供应商,全部集中采购,和保持现状,都不符合利益最大化原则。通过分析,找到真正的问题根源,发现精细化采购管理已经非常必要了。

    4、需要哪些数据?

    采购过程涉及的数据,很多,需要哪些源数据?采购总额?零部件行业竞争度?货款周期?采购频次?库存备货数?客户地域因子?客户规模?等等列一个表。避免不断增加新的因子。

    5、如何采集?

    数据库中供应商信息采集,平时供应商各种信息录入,产品特性录入等,做数据分析一定要有原料,否则巧妇难为无米之炊。

    6、如何整理?

    整理数据是门技术活。不得不承认EXCEL是个强大工具,数据透视表的熟练使用和技巧,作为支付数据分析必不可少,各种函数和公式也需要略懂一二,避免低效率的数据整理。Spss也是一个非常优秀的数据处理工具,特别在数据量比较大,而且当字段由特殊字符的时候,比较好用。

    7、如何分析?

    整理完毕,如何对数据进行综合分析,相关分析?这个是很考验逻辑思维和推理能力的。同时分析推理过程中,需要对产品了如指掌,对供应商很了解,对采购流程很熟悉。看似一个简单的数据分析,其实是各方面能力的体现。首先是技术层面,对数据来源的抽取-转换-载入原理的理解和认识;其实是全局观,对季节性、公司等层面的业务有清晰的了解;最后是专业度,对业务的流程、设计等了如指掌。练就数据分析的洪荒之力并非一朝一夕之功,而是在实践中不断成长和升华。一个好的数据分析应该以价值为导向,放眼全局、立足业务,用数据来驱动增长。

    8、如何展现和输出?

    数据可视化也是一个学问。如何用合适的图表表现?每一种图表的寓意是什么?下面列举下常用的8个图表:

    1)折线图:合适用于随时间而变化的连续数据,例如随时间收入变化,及增长率变化。

    2)柱型图:主要用来表示各组数据之间的差别。主要有二维柱形图、三维柱形图、圆柱图、圆锥图和棱锥图。

    3)堆积柱形图:堆积柱形图不仅可以显示同类别中每种数据的大小,还可以显示总量的大小。

    4)线-柱图:这种类型的图不仅可以显示出同类别的比较,还可以显示出趋势情况。

    5)条形图:类似于横向的柱状图,和柱状图的展示效果相同,主要用于各项类的比较。

    6)饼图:主要显示各项占比情况。饼图一般慎用,除非占比区别非常明显。因为肉眼对对饼图的占比比例分辨并不直观。而且饼图的项,一般不要超过6项。6项后建议用柱形图更为直观。

    7)复合饼图:一般是对某项比例的下一步分析。

    8)母子饼图:可直观地分析项目的组成结构与比重

    图表不必太花哨,一个表说一个问题就好。用友好的可视化图表,节省阅读者的时间,也是对阅读者的尊重。

    有一些数据,辛辛苦苦做了整理和分析,最后发现对结论输出是没有关系的,虽然做了很多工作,但不能为了体现工作量而堆砌数据。

    在展现的过程中,请注明数据的来源,时间,指标的说明,公式的算法,不仅体现数据分析的专业度,更是对报告阅读者的尊重。

    数据挖掘常用的方法有哪些?
    刘老师 数据分析师

    1、分类

    分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。

    主要的分类方法:决策树、KNN 法 (K-Nearest Neighbor)、SVM 法、VSM 法、Bayes 法、神经网络等。

    2、聚类

    聚类指事先并不知道任何样本的类别标号,按照对象的相似性和差异性,把一组对象划分成若干类,并且每个类里面对象之间的相似度较高,不同类里面对象之间相似度较低或差异明显。我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起,聚类是一种无监督学习。

    聚类的方法(算法):主要的聚类算法可以划分为如下几类,划分方法、层次方法、基于密度的方法、基于网格的方法、基于模型的方法。每一类中都存在着得到广泛应用的算法, 划分方法中有 k-means 聚类算法、层次方法中有凝聚型层次聚类算法、基于模型方法中有神经网络聚类算法。

    3、回归分析

    回归分析是一个统计预测模型,用以描述和评估因变量与一个或多个自变量之间的关系;反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系。

    回归分析的应用:回归分析方法被广泛地用于解释市场占有率、销售额、品牌偏好及市场营销效果。它可以应用到市场营销的各个方面,如客户寻求、保持和预防客户流失活动、产品生命周期分析、销售趋势预测及有针对性的促销活动等。

    回归分析的主要研究问题:数据序列的趋势特征、数据序列的预测、数据间的相关关系等。

    4、关联规则

    关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。关联规则是描述数据库中数据项之间所存在的关系的规则。

    5、神经网络方法

    神经网络作为一种先进的人工智能技术,因其自身自行处理、分布存储和高度容错等特性非常适合处理非线性的问题,以及那些以模糊、不完整、不严密的知识或数据为特征的问题,它的这一特点十分适合解决数据挖掘的问题。

    6、Web数据挖掘

    web数据挖掘是一项综合性技术,指Web从文档结构和使用的集合C中发现隐含的模式P,如果将C看做是输入,P 看做是输出,那么Web 挖掘过程就可以看做是从输入到输出的一个映射过程。

    7、特征分析

    特征分析是从数据库中的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征。

    8、偏差分析

    偏差是数据集中的小比例对象。通常,偏差对象被称为离群点、例外、野点等。偏差分析就是发现与大部分其他对象不同的对象。

    数据挖掘要解决的问题有哪些?
    刘老师 数据分析师

    1.可伸缩

    由于数据产生和采集技术的进步,数太字节(TB)、数拍字节(PB)甚至数艾字节(EB)的数据集越来越普遍。如果数据挖掘算法要处理这些海量数据集,则算法必须是可伸缩的。许多数据挖掘算法采用特殊的搜索策略来处理指数级的搜索问题。为实现可伸缩可能还需要实现新的数据结构,才能以有效的方式访问每个记录。

    例如,当要处理的数据不能放进内存时,可能需要核外算法。使用抽样技术或开发并行和分布式算法也可以提高可伸缩程度。

    2.高维性

    现在,常常会遇到具有成百上千属性的数据集,而不是几十年前常见的只具有少量属性的数据集。在生物信息学领域,微阵列技术的进步已经产生了涉及数千特征的基因表达数据。具有时间分量或空间分量的数据集也通常具有很高的维度。

    例如,考虑包含不同地区的温度测量结果的数据集,如果在一个相当长的时间周期内反复地测量,则维数(特征数)的增长正比于测量的次数。为低维数据开发的传统数据分析技术通常不能很好地处理这类高维数据,如维灾难问题。此外,对于某些数据分析算法,随着维数(特征数)的增加,计算复杂度会迅速增加。

    3.异构数据和复杂数据

    通常,传统的数据分析方法只处理包含相同类型属性的数据集,或者是连续的,或者是分类的。随着数据挖掘在商务、科学、医学和其他领域的作用越来越大,越来越需要能够处理异构属性的技术。

    近年来,出现了更复杂的数据对象。这种非传统类型的数据如:含有文本、超链接、图像、音频和视频的Web和社交媒体数据,具有序列和三维结构的DNA数据,由地球表面不同位置、不同时间的测量值(温度、压力等)构成的气候数据。

    为挖掘这种复杂对象而开发的技术应当考虑数据中的联系,如时间和空间的自相关性、图的连通性、半结构化文本和XML文档中元素之间的父子关系。

    4.数据的所有权与分布

    有时,需要分析的数据不会只存储在一个站点,或归属于一个机构,而是地理上分布在属于多个机构的数据源中。这就需要开发分布式数据挖掘技术。分布式数据挖掘算法面临的主要挑战包括:

    如何降低执行分布式计算所需的通信量?如何有效地统一从多个数据源获得的数据挖掘结果?如何解决数据安全和隐私问题?

    5.非传统分析

    传统的统计方法基于一种假设检验模式,即提出一种假设,设计实验来收集数据,然后针对假设分析数据。但是,这一过程劳力费神。当前的数据分析任务常常需要产生和评估数千种假设,因此需要自动地产生和评估假设,这促使人们开发了一些数据挖掘技术。

    此外,数据挖掘所分析的数据集通常不是精心设计的实验的结果,并且它们通常代表数据的时机性样本(opportunistic sample),而不是随机样本(random sample)。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司