问答详情

哪些数据会使用可视化?

844次观看
标签: 可视化 数据可视化
老师回答

信息图表: 与单个数据可视化不同,信息图表会收集大量信息,并为您提供全面的视觉表示。信息图表非常适合探索复杂且高度主观的主题。

热图可视化: 此方法使用带有浅色或暖色突出显示的数字数据点的图形来指示数据是高值点还是低值点。从心理上讲,这种数据可视化方法可以帮助观看者识别信息,因为研究表明,人类对颜色的解释要比数字和字母好得多。

发烧图: 发烧图显示一段时间内的变化数据。作为营销工具,我们可以与上一年的效果进行比较,以准确预测下一年的情况。这可以帮助决策者轻松地解释广泛而变化的数据源。

面积图(或图形): 面积图非常适合可视化数据的时间序列关系。无论您是查看每个月的各个部门的收入,还是查看自1980年代以来某产品的受欢迎程度,面积图都可以直观地显示这种关系。

直方图:直方图不是在观察时间趋势,而是在测量频率。这些图使用自动数据可视化公式显示数值数据的分布,以显示易于解释的值范围。

免费直播

    相关推荐
    数据挖掘常用的方法有哪些?
    刘老师 数据分析师

    1、分类

    分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。

    主要的分类方法:决策树、KNN 法 (K-Nearest Neighbor)、SVM 法、VSM 法、Bayes 法、神经网络等。

    2、聚类

    聚类指事先并不知道任何样本的类别标号,按照对象的相似性和差异性,把一组对象划分成若干类,并且每个类里面对象之间的相似度较高,不同类里面对象之间相似度较低或差异明显。我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起,聚类是一种无监督学习。

    聚类的方法(算法):主要的聚类算法可以划分为如下几类,划分方法、层次方法、基于密度的方法、基于网格的方法、基于模型的方法。每一类中都存在着得到广泛应用的算法, 划分方法中有 k-means 聚类算法、层次方法中有凝聚型层次聚类算法、基于模型方法中有神经网络聚类算法。

    3、回归分析

    回归分析是一个统计预测模型,用以描述和评估因变量与一个或多个自变量之间的关系;反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系。

    回归分析的应用:回归分析方法被广泛地用于解释市场占有率、销售额、品牌偏好及市场营销效果。它可以应用到市场营销的各个方面,如客户寻求、保持和预防客户流失活动、产品生命周期分析、销售趋势预测及有针对性的促销活动等。

    回归分析的主要研究问题:数据序列的趋势特征、数据序列的预测、数据间的相关关系等。

    4、关联规则

    关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。关联规则是描述数据库中数据项之间所存在的关系的规则。

    5、神经网络方法

    神经网络作为一种先进的人工智能技术,因其自身自行处理、分布存储和高度容错等特性非常适合处理非线性的问题,以及那些以模糊、不完整、不严密的知识或数据为特征的问题,它的这一特点十分适合解决数据挖掘的问题。

    6、Web数据挖掘

    web数据挖掘是一项综合性技术,指Web从文档结构和使用的集合C中发现隐含的模式P,如果将C看做是输入,P 看做是输出,那么Web 挖掘过程就可以看做是从输入到输出的一个映射过程。

    7、特征分析

    特征分析是从数据库中的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征。

    8、偏差分析

    偏差是数据集中的小比例对象。通常,偏差对象被称为离群点、例外、野点等。偏差分析就是发现与大部分其他对象不同的对象。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司