问答详情

大数据工程技术有什么优势?

1580次观看
标签: 大数据工程 大数据工程技术优势
老师回答

1、首先,可以海量数据存储

随着信息化与网络安全建设的发展,企业的信息系统、安全设备越来越多,所产生的告警、日志等安全数据也呈爆发式增长,传统安全分析技术一直无法解决海量数据的实时处理与海量存储的问题。

传统关系型数据库的数据处理效率在3000EPS左右,而大数据分布式架构下可以将每秒数据处理效率提高15倍以上。同时可以通过灵活扩展,解决海量数据存储扩容成本高的问题。

2、其次,可以提高查询速度

数据查询的范围,是以数据存储能力为前提的,而实时的计算能力则是数据可以任意查询的基础保障。比如希望查询时间跨度为6个月数据,首先要能做到可以存储6个月的数据量,并且能够支持任意查询的处理速度。

传统关系型数据库查询1TB、时间跨度为6个月的数据,可能需要以小时为单位计算,而大数据分布式架构下能够达到秒级响应。如果单个节点有效数据不超过2TB,在优化好的基础上可以做到2秒完成任何数据查询。

3、最后,可以降低开发成本

在传统技术架构下,涉及到数据分析类系统的开发,需要进行详细数据结构设计,不设计好数据结构是无法完成开发任务的,如果功能变化,可能需要重新设计数据架构。

免费直播

    精选课程
    相关推荐
    大数据预测分析方法有哪些?
    刘老师 大数据工程师

    1、可视化分析

    大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。

    2、数据挖掘算法

    大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。

    3、预测性分析能力

    大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。

    4、数据质量和数据管理

    大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司