问答详情

做数据分析师有哪些要求?

1057次观看
标签: 数据分析师 数据分析师要求
老师回答

一、理论知识要宽泛。数据分析常常涉及统计学,数学的相关知识,所以要求专业的数据分析师一定要对数据敏感,需要有一定的统计知识,以及各大模型原理等。

二、理解能力要好。数据分析主要是分析企业业务数据,从而了解业务背后的商业规律与逻辑,只有了解了业务,才能更好地进行分析,故要求分析师还需要有一定的业务理解能力。

三、实际操作能力。数据分析师一定离不开数据分析工具,这里所说的能力,包括选对数据分析工具,以及运用这款数据分析工具的能力,因此,实际操作能力很大程度取决于数据分析工具是否选对了,选对了事半功倍,选错了会阻碍你的数据分析之路。

免费直播

    相关推荐
    让大数据分析更有效的5种技术措施有哪些?
    刘老师 数据分析师

    (1)优化数据收集

    数据收集是最终导致业务决策的事件链中的第一步,确保收集的数据和业务感兴趣的指标的相关性非常重要。

    定义对企业有影响的数据类型,以及分析如何增加价值。基本上,考虑客户行为,以及这将对企业的业务有何适用性,然后使用此数据进行分析。

    存储和管理数据是数据分析中的重要一步。因此,必须保持数据质量和分析效率。

    (2)清除垃圾数据

    垃圾数据是大数据分析的祸患。这包括不准确,冗余或不完整的客户信息,可能会对算法造成严重破坏,并导致分析结果不佳。根据垃圾数据做出的决策可能会带来麻烦。

    清洁数据至关重要,涉及丢弃不相关的数据,只保留高品质的数据,当前,为了获得完整和相关的数据,人工干预不是理想的模式,不可持续并且受主观影响,因此数据库本身需要被清理。这种类型的数据以各种方式渗透到系统中,其中包括随时间推移而变化,如更改客户信息或数据仓库中存储可能会损坏数据集。垃圾数据可能会对营销和潜在客户生产等行业产生明显的影响,但通过基于故障信息的业务决策,财务和客户关系也会受到不利影响。其后果也是广泛的,包括挪用资源,浪费时间和精力。

    解决垃圾数据难题的方法是确保数据进入系统得到干净的控制。具体来说,重复免费,完整和准确的信息。如今,那些具有专门从事反调试技术和清理数据的应用程序和企业,可以对任何对大数据分析感兴趣的公司进行调查。数据清洁是市场营销人员的首要任务,因为数据质量差的连锁效应可能会大大提高企业成本。

    为了获得最大的数据量,企业必须花时间确保质量足以准确地查看业务决策和营销策略。

    (3)标准化数据集

    在大多数商业情况下,数据来自各种来源和各种格式。这些不一致可能转化为错误的分析结果,这将会大大扭曲统计推断结果。为了避免这种可能性,必须决定数据的标准化框架或格式,并严格遵守。

    (4)数据整合

    大多数企业如今组成不同的自治部门,因此许多企业都有隔离的数据存储库或数据“孤岛”。这是具有挑战性的,因为来自一个部门的客户信息的更改将不会转移到另一个部门,因此他们将根据不准确的源数据进行决策。

    为了解决这个问题,采用中央数据管理平台是必要的,整合所有部门,从而确保数据分析的准确性更高,所有部门的任何变化都可以立即访问。

    (5)数据隔离

    即使数据干净,将其组织和集成在一起,也可能是分析问题。在这种情况下,将数据分成几组是有帮助的,同时牢记分析正在尝试实现什么。这样,可以分析子群体内的趋势,这些趋势可能更有意义并具有更大的价值。当查看可能与整个数据集可能无关的高度具体的趋势和行为时尤其如此。

    数据质量对大数据分析至关重要。许多公司试图采用分析软件,但却没有考虑到进入系统做什么。这将导致不准确的推断和解释,可能代价昂贵,并且对企业造成损害。一个定义明确,管理良好的数据库管理平台是使用大数据分析的企业不可或缺的工具。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司