问答详情

人工智能技术都有哪些?

2489次观看
标签: 人工智能技术 人工智能
老师回答

1、计算机视觉

人们认识世界, 91%是通过视觉来实现。同样, 计算机视觉的最终目标就是让计算机能够像人一样通过视觉来认识和了解世界, 它主要是通过算法对图像进行识别分析, 目前计算机视觉最广泛的应用是人脸识别和图像识别。相关技术具体包括图像分类、目标跟踪、语义分割。

2、 机器学习

机器学习的基本思想是通过计算机对数据的学习来提升自身性能的算法。机器学习中需要解决的最重要的4类问题是预测、聚类、分类和降维。机器学习按照学习方法分类可分为:监督学习、无监督学习、半监督学习和强化学习。

3、自然语言处理

自然语言处理 (NLP) [30]是指计算机拥有识别理解人类文本语言的能力, 是计算机科学与人类语言学的交叉学科。自然语言是人与动物之间的最大区别, 人类的思维建立在语言之上, 所以自然语言处理也就代表了人工智能的最终目标。机器若想实现真正的智能自然语言处理是必不可少的一环。自然语言处理分为语法语义分析、信息抽取、文本挖掘、信息检索、机器翻译、问答系统和对话系统7个方向。自然语言处理主要有5类技术, 分别是分类、匹配、翻译、结构预测及序列决策过程。

4、语音识别

现在人类对机器的运用已经到了一个极高的状态, 所以人们对于机器运用的便捷化也有了依赖。采用语言支配机器的方式是一种十分便捷的形式。语音识别技术是将人类的语音输入转换为一种机器可以理解的语言, 或者转换为自然语言的一种过程。

免费直播

    精选课程
    相关推荐
    大数据开发具体要怎样学习?
    梦老师 大数据工程师

    1、编程语言的学习

    对于零基础的同学,一开始入门可能不会太简单。因为需要掌握一门计算机的编程语言,大家都知道计算机编程语言有很多,比如:R,C++,JAVA等等。建议从Java入手,容易学而且很好用,Java只需理解一些基本的概念,就可以用它编写出适合于各种情况的应用程序。现在一般也都是从JAVA开始学起,这相当于也是一个基础。

    2、大数据相关技术的学习

    学完了编程语言之后,一般就可以进行大数据部分的学习了。一般来说,学习大数据部分的时间比学习Java的时间要更长,JAVA算作学习大数据要学习的一部分,除此之外学习大数据还需要学习其他相关类型的数据知识。大数据部分,包括Hadoop 、Spark、Storm开发、Hive 数据库、Linux 操作系统等知识,还要熟悉大数据处理和分析技术。如果要完整的学习大数据的话,这些都是必不可少的。

    3、项目实战阶段

    学习任何一门技术,除了理论知识,项目的实战训练也是非常重要的,进行一些实际项目的操作练手,可以帮助我们更好的理解所学的内容,同时对于相关知识也能加强记忆,在今后的运用中,也可以更快的上手,对于相关知识该怎么用也有了经验。在项目实战中,遇到问题最好积极动手记录下来,这样才能更好的去解决你遇到的问题。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司