问答详情

商业数据分析工具有哪些?

537次观看
标签: 数据分析 商业数据分析
老师回答

1.FineBI

目前国内数据分析的佼佼者。FineBI是新一代自助式BI工具,企业客户多、服务范围广, 多维OLAP分析是BI工具分析功能的集中体现,凭借FineBI简单流畅的操作、强劲的大数据性能和自助式的分析体验,企业可充分了解和利用他们的数据,增强企业的竞争力。

2.Tableau

Tableau是大数据可视化软件的市场领导者之一,在为大数据操作,深度学习算法和多种类型的AI应用程序提供交互式数据可视化方面尤为高效。它内置常用的分析图表,和一些数据分析模型,可以快速的探索式数据分析,可以快速地做出动态交互图。

3.永洪敏捷BI

该产品稳定性较高,利用sql处理数据。永洪的技术主要分为大数据和可视化亮点。覆盖BI和大数据(海量数据、实时分析),敏捷BI,自服务BI,探索式BI,性价比高。但不支持程序接口,实施交由第三方外包。永洪BI在产品能力上还不错,特别是大数据性能方面,同样可以支撑亿级数据的抽取和分析,而在服务方面则表现一般。

4.Power BI

Microsoft Power BI是一个基于Web的业务分析工具套件,擅长数据可视化,采用的CS架构,主要的报表连接过程使用的客户端,浏览器端可以进行简单的报表编辑。其连接数据源需要单独下载msi驱动,而不是目前主流的JDBC的连接方式。操作基本都是拖拽,不过其探索式分析能力有限,不适合做定制化开发(这个不符合我们需要集成的需求)。学习成本较低上手快,但功能简单,无法支持复杂的业务场景,不支持定制开发。

5.SmartBI

企业级商业智能应用平台,用户可以更直观便捷地获取信息。能满足用户自助式的数据查询和报表,OLAP,各种业务报表,制作仪表盘,在移动终端上展示,有统一服务平台支持众多的管理维护功能。和FineBI同为比较不错的国内BI数据分析软件,但是操作体验并不是很好,界面粗糙,并没有FineBI的界面美观。

6.Qlikview

属于新一代的轻量化商业智能BI产品,体现在建模、部署和使用上。只能运行在windows系统,C/S的产品架构。采用内存动态计算,数据量小时,速度很快;数据量大时,吃内存很厉害性能偏慢。不过目前对于QlikView也是代理形式为主,本地化和定制化能力差,和tableau一样没有大数据处理能力,需要对接数据仓库。国内复杂报表填报等难以支持,另外代理商对客户的响应能力有限。

免费直播

    相关推荐
    数据挖掘中实用分析方法有哪些?
    刘老师 数据分析师

    1.基于历史的MBR分析

    基于历史(Memory-Based Reasoning)的MBR分析方法最主要的概念是用已知的案例(case)来预测未来案例的一些属性(attribute),通常找寻最相似的案例来做比较。

    MBR中有两个主要的要素,分别为距离函数(distance function)与结合函数(combination function)。距离函数的用意在找出最相似的案例;结合函数则将相似案例的属性结合起来,以供预测之用。

    MBR的优点是它容许各种型态的数据,这些数据不需服从某些假设。另一个优点是其具备学习能力,它能藉由旧案例的学习来获取关于新案例的知识。较令人诟病的是它需要大量的历史数据,有足够的历史数据方能做良好的预测。此外记忆基础推理法在处理上亦较为费时,不易发现最佳的距离函数与结合函数。其可应用的范围包括欺骗行为的侦测、客户反应预测、医学诊疗、反应的归类等方面。

    2.购物篮分析

    购物篮分析(Market Basket Analysis)最主要的目的在于找出什么样的东西应该放在一起商业上的应用在藉由顾客的购买行为来了解是什么样的顾客以及这些顾客为什么买这些产品, 找出相关的联想(association)规则,企业藉由这些规则的挖掘获得利益与建立竞争优势。举例来说,零售店可藉由此分析改变置物架上的商品排列或是设计 吸引客户的商业套餐等等。

    购物篮分析基本运作过程包含下列三点:

    选择正确的品项:这里所指的正确乃是针对企业体而言,必须要在数以百计、千计品项中选择出真正有用的品项出来。

    经由对共同发生矩阵(co-occurrence matrix)的探讨挖掘出联想规则。

    克服实际上的限制:所选择的品项愈多,计算所耗费的资源与时间愈久(呈现指数递增),此时必须运用一些技术以降低资源与时间的损耗。

    购物篮分析技术可以应用在下列问题上:针对信用卡购物,能够预测未来顾客可能购买什么。对于电信与金融服务业而言,经由购物篮分析能够设计不同的服务组合以扩大利润。保险业能藉由购物篮分析侦测出可能不寻常的投保组合并作预防。对病人而言,在疗程的组合上,购物篮分析能作为是否这些疗程组合会导致并发症的判断依据。

    3.决策树

    决策树(Decision Trees)在解决归类与预测上有着极强的能力,它以法则的方式表达,而这些法则则以一连串的问题表示出来,经由不断询问问题最终能导出所需的结果。典型的决策树顶端是一个树根,底部有许多的树叶,它将纪录分解成不同的子集,每个子集中的字段可能都包含一个简单的法则。此外,决策树可能有着不同的外型,例如二元 树、三元树或混和的决策树型态。

    4.遗传算法

    遗传算法(Genetic Algorithm)学习细胞演化的过程,细胞间可经由不断的选择、复制、交配、突变产生更佳的新细胞。基因算法的运作方式也很类似,它必须预先建立好一个模式,再经由一连串类似产生新细胞过程的运作,利用适合函数(fitness function)决定所产生的后代是否与这个模式吻合,最后仅有最吻合的结果能够存活,这个程序一直运作直到此函数收敛到最佳解。基因算法在群集 (cluster)问题上有不错的表现,一般可用来辅助记忆基础推理法与类神经网络的应用。

    5.聚类分析

    聚类分析(Cluster Detection)这个技术涵盖范围相当广泛,包含基因算法、类神经网络、统计学中的群集分析都有这个功能。它的目标为找出数据中以前未知的相似群体,在许许多多的分析中,刚开始都运用到群集侦测技术,以作为研究的开端。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司