问答详情

数据挖掘九律分别是什么?

1142次观看
标签: 数据挖掘九律 数据挖掘
老师回答

第一,目标律。数据挖掘是一个业务过程,必须得有业务目标。无目的,无过程。

第二,知识律。业务知识贯穿在挖掘这个业务过程的各环节。

第三,准备律。数据获取、数据准备等数据处理耗时占整个挖掘过程的一半。

第四,NFL律。NFL,没有免费的午餐。没有一个固定的算法适用所有的业务问题,特定应用适合的模型只能通过经验发现。

第五,大卫律。要相信,数中必有业务规律。大卫·沃尔金斯最早提出的,故此名。

第六,洞察律。数据挖掘本质上是增强对业务领域的认知。

第七,预测律。数据挖掘基于过去得出模式,并泛化到类似新事物上,这就是预测,但这是统计概念的。

第八,价值律。挖掘模型的最终价值并非模型精度或稳定性,而是驱动业务行动或通过新洞察导致策略改善。

第九,变化律。人不会两次踏入同一条河流。业务在变,目标在变,认识也在变,甚至规律本身也在变,挖掘模型也得与时俱进。

免费直播

    相关推荐
    数据挖掘具有哪些特点?
    刘老师 数据分析师

    1、基于大量数据:并非说小数据量上就不可以进行挖掘,实际上大多数数据挖掘的算法都可以在小数据量上运行并得到结果。但是,一方面过小的数据量完全可以通过人工分析来总结规律,另一方面来说,小数据量常常无法反映出真实世界中的普遍特性。

    2、非平凡性:所谓非平凡,指的是挖掘出来的知识应该是不简单的,绝不能是类似某著名体育评论员所说的“经过我的计算,我发现了一个有趣的现象,到本场比赛结束为止,这届世界杯的进球数和失球数是一样的。非常的巧合!”那种知识。这点看起来勿庸赘言,但是很多不懂业务知识的数据挖掘新手却常常犯这种错误。

    3、隐含性:数据挖掘是要发现深藏在数据内部的知识,而不是那些直接浮现在数据表面的信息。常用的BI工具,例如报表和OLAP,完全可以让用户找出这些信息。

    4、新奇性:挖掘出来的知识应该是以前未知的,否则只不过是验证了业务专家的经验而已。只有全新的知识,才可以帮助企业获得进一步的洞察力。

    5、价值性:挖掘的结果必须能给企业带来直接的或间接的效益。有人说数据挖掘只是“屠龙之技”,看起来神乎其神,却什么用处也没有。这只是一种误解,不可否认的是在一些数据挖掘项目中,或者因为缺乏明确的业务目标,或者因为数据质量的不足,或者因为人们对改变业务流程的抵制,或者因为挖掘人员的经验不足,都会导致效果不佳甚至完全没有效果。但大量的成功案例也在证明,数据挖掘的确可以变成提升效益的利器。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司