问答详情

优秀的数据分析报告一般包含哪些内容?

1147次观看
标签: 数据分析 数据分析报告
老师回答

1、标题页

标题页需要写明报告的题目,题目要精简干练,根据版面的要求在一两行内完成。标题是一种语言艺术,好的标题不仅可以表现数据分析的主题,而且能够激发读者的阅读兴趣,因此需要重视标题的制作,以增强其艺术性的表现力。

2、目录

目录可以帮助读者快捷方便地找到所需的内容,因此,要在目录中列出报告主要章节的名称。如果是在Word中撰写报告,在章节名称后面还要加上对应的页码,对于比较重要的二级目录,也可以将其列出来。所以,从另外一个角度说,目录也就相当于数据分析大纲,它可以体现出报告的分析思路。但是目录也不要太过详细,因为这样阅读起来让人觉得冗长并且耗时。

此外,通常公司或企业的高层管理人员没有时间阅读完整的报告,他们仅对其中一些以图表展示的分析结论会有兴趣,因此,当书面报告中没有大量图表时,可以考虑将各章图表单独制作成目录,以便日后更有效地使用。

3、前言

前言的写作一定要经过深思熟虑、前言内容是否正确,对最终报告是否能解决业务问题,能够给决策者决策提供有效依据起决定性作用。前沿是分析报告的一个重要组成部分,主要包括分析背景、目的及思路三方面∶为何要开展此次分析?有何意义?通过此次分析要解决什么问题?达到何种目的?如何开展此次分析,主要通过哪几方面开展?

4、正文

正文是数据分析报告的核心部分,它将系统全面地表述数据分析的过程与结果。

撰写正文报告时,根据之前分析思路中确定的每项分析内容,利用各种数据分析方法,一步步地展开分析,通过图表及文字相结合的方式,形成报告正文,方便阅读者理解。

5、结论与建议

结论是以数据分析结果为依据得出的分析结果,通常以综述性文字来说明。它不是分析结果的简单重复,而是结合公司实际业务,经过综合分析、逻辑推理形成的总体论点。结论是去粗取精、由表及里而抽象出的共同、本质的规律,它与正文紧密衔接,与前言相呼应 ,使分析报告首尾呼应。结论应该措辞严谨、准确、鲜明。

建议是根据数据分析结论对企业或业务等所面临的问题而提出的改进方法,建议主要关注在保持有时候及改进劣势等方面。因为分析人员所给出的建议主要是基于数据分析结果而得到的。会存在局限性,因此必须结合公司的具体业务才能得出切实可行的建议。

6、附录

附录是数据分析报告的一个重要组成部分。一般来说,附录提供正文中涉及而未予阐述的有关资料,有时也含有正文中提及的资料,从而向读者提供一条深入数据分析报告的途径。它主要包括报告中涉及的专业名词解释、计算方法、重要原始数据、地图等内容。每个内容都需要编号,以备查询。

当然并不是要求每篇报告都有附录,附录是数据分析报告的补充,并不是必需的,应该根据各自的情况再决定是否需要在报告结尾处添加附录。

免费直播

    相关推荐
    数据挖掘免费软件工具有哪些?
    刘老师 数据分析师

    1.Rapid Miner

    Rapid Miner,原名YALE又一个学习环境,是一个用于机器学习和数据挖掘实验的环境,用于研究和实际的数据挖掘任务。毫无疑问,这是世界领先的数据挖掘开源系统。该工具以Java编程语言编写,通过基于模板的框架提供高级分析。

    它使得实验可以由大量的可任意嵌套的操作符组成,这些操作符在XML文件中是详细的,并且是由快速的Miner的图形用户界面完成的。最好的是用户不需要编写代码。它已经有许多模板和其他工具,让我们可以轻松地分析数据。

    2. IBM SPSS Modeler

    IBM SPSS Modeler工具工作台最适合处理文本分析等大型项目,其可视化界面非常有价值。 它允许您在不编程的情况下生成各种数据挖掘算法。 它也可以用于异常检测、贝叶斯网络、CARMA、Cox回归以及使用多层感知器进行反向传播学习的基本神经网络。

    3.Oracle Data Mining

    Oracle。 作为“高级分析数据库”选项的一部分,Oracle数据挖掘功能允许其用户发现洞察力,进行预测并利用其Oracle数据。您可以构建模型来发现客户行为目标客户和开发概要文件。

    Oracle Data Miner GUI使数据分析师、业务分析师和数据科学家能够使用相当优雅的拖放解决方案处理数据库内的数据。 它还可以为整个企业的自动化、调度和部署创建SQL和PL / SQL脚本。

    数据分析思路都有哪些?
    刘老师 数据分析师

    1、趋势分析

    最简单、最常见的数据分析方法,一般用于核心指标的长期跟踪,比如点击率、GMV、活跃用户数。可以看出数据有那些趋势上的变化,有没有周期性,有没有拐点等,继而分析原因。

    2、多维分解

    也就是通过不同的维度对于数据进行分解,以获取更加精细的数据洞察。举个例子,对网站维护进行数据分析,可以拆分出地区、访问来源、设备、浏览器等等维度。

    3、用户分群

    针对符合某种特定行为或背景信息的用户,进行特定的优化和分析,将多维度和多指标作为分群条件,有针对性地优化供应链,提升供应链稳定性。

    4、漏斗分析

    按照已知的转化路径,借助漏斗模型分析总体和每一步的转化情况。例如将漏斗图用于网站关键路径的转化率分析,不仅能显示用户的最终转化率,同时还可以展示每一节点的转化率。

    5、留存分析

    留存分析是一种用来分析用户参与情况/活跃程度的分析模型,考察进行初始行为的用户中,有多少人会进行后续行为。衡量留存的常见指标有次日留存率、7日留存率、30日留存率等。

    6、A/B 测试

    A/B测试是为了达到一个目标,采取了两套方案,通过实验观察两组方案的数据效果,判断两组方案的好坏,需要选择合理的分组样本、监测数据指标、事后数据分析和不同方案评估。

    7、对比分析

    分为横向对比(跟自己比)和纵向对比(跟别人比),常见的对比应用有A/B test,A/B test的关键就是保证两组中只有一个单一变量,其他条件保持一致。

    8、交叉分析

    交叉分析法就是将对比分析从多个维度进行交叉展现,进行多角度的结合分析,从中发现最为相关的维度来探索数据变化的原因。

    数据分析常见流程有哪些?
    刘老师 数据分析师

    1、为什么分析?

    首先,你得知道为什么分析?弄清楚此次数据分析的目的。比如,什么类型的客户交货期总是拖延。你所有的分析都的围绕这个为什么来回答。避免不符合目标反复返工,这个过程会很痛苦。

    2、分析目标是谁?

    要牢记清楚的分析因子,统计维度是金额,还是产品,还是供应商行业竞争趋势,还是供应商规模等等。避免把金额当产品算,把产品当金额算,算出的结果是差别非常大的。

    3、想达到什么效果?

    通过分析各个维度产品类型,公司采购周期,采购条款,找到真正的问题。例如这次分析的薄弱环节供应商,全部集中采购,和保持现状,都不符合利益最大化原则。通过分析,找到真正的问题根源,发现精细化采购管理已经非常必要了。

    4、需要哪些数据?

    采购过程涉及的数据,很多,需要哪些源数据?采购总额?零部件行业竞争度?货款周期?采购频次?库存备货数?客户地域因子?客户规模?等等列一个表。避免不断增加新的因子。

    5、如何采集?

    数据库中供应商信息采集,平时供应商各种信息录入,产品特性录入等,做数据分析一定要有原料,否则巧妇难为无米之炊。

    6、如何整理?

    整理数据是门技术活。不得不承认EXCEL是个强大工具,数据透视表的熟练使用和技巧,作为支付数据分析必不可少,各种函数和公式也需要略懂一二,避免低效率的数据整理。Spss也是一个非常优秀的数据处理工具,特别在数据量比较大,而且当字段由特殊字符的时候,比较好用。

    7、如何分析?

    整理完毕,如何对数据进行综合分析,相关分析?这个是很考验逻辑思维和推理能力的。同时分析推理过程中,需要对产品了如指掌,对供应商很了解,对采购流程很熟悉。看似一个简单的数据分析,其实是各方面能力的体现。首先是技术层面,对数据来源的抽取-转换-载入原理的理解和认识;其实是全局观,对季节性、公司等层面的业务有清晰的了解;最后是专业度,对业务的流程、设计等了如指掌。练就数据分析的洪荒之力并非一朝一夕之功,而是在实践中不断成长和升华。一个好的数据分析应该以价值为导向,放眼全局、立足业务,用数据来驱动增长。

    8、如何展现和输出?

    数据可视化也是一个学问。如何用合适的图表表现?每一种图表的寓意是什么?下面列举下常用的8个图表:

    1)折线图:合适用于随时间而变化的连续数据,例如随时间收入变化,及增长率变化。

    2)柱型图:主要用来表示各组数据之间的差别。主要有二维柱形图、三维柱形图、圆柱图、圆锥图和棱锥图。

    3)堆积柱形图:堆积柱形图不仅可以显示同类别中每种数据的大小,还可以显示总量的大小。

    4)线-柱图:这种类型的图不仅可以显示出同类别的比较,还可以显示出趋势情况。

    5)条形图:类似于横向的柱状图,和柱状图的展示效果相同,主要用于各项类的比较。

    6)饼图:主要显示各项占比情况。饼图一般慎用,除非占比区别非常明显。因为肉眼对对饼图的占比比例分辨并不直观。而且饼图的项,一般不要超过6项。6项后建议用柱形图更为直观。

    7)复合饼图:一般是对某项比例的下一步分析。

    8)母子饼图:可直观地分析项目的组成结构与比重

    图表不必太花哨,一个表说一个问题就好。用友好的可视化图表,节省阅读者的时间,也是对阅读者的尊重。

    有一些数据,辛辛苦苦做了整理和分析,最后发现对结论输出是没有关系的,虽然做了很多工作,但不能为了体现工作量而堆砌数据。

    在展现的过程中,请注明数据的来源,时间,指标的说明,公式的算法,不仅体现数据分析的专业度,更是对报告阅读者的尊重。

    注册电脑版

    版权所有 2003-2020 广州环球青藤科技发展有限公司